$$boson boson boso$$

15MAT11

OR

		OR OR	
6	a.	Show that the vector $\vec{x} = (x + 2x)i + (x - 2z)k$ is a solonoidal vector. Also find Curl \vec{x}	(06 Marks)
	1	$\vec{v} = (x+3y)i + (y-3z)j + (x-2z)k$ is a solenoidal vector. Also find Curl \vec{v} .	(06 Marks)
		If $\vec{F} = (x + 3y + 1)\vec{i} + \vec{j} - (x + y)\vec{k}$ show that \vec{F} .curl $\vec{F} = 0$	(05 Marks)
	c.	Prove that $\nabla \times (\phi A) = \phi(\nabla \times A) + \nabla \phi \times A$.	(05 Marks)
		Module-4	
_	•	π/2	$(0 < M_{\odot} + 1)$
7	a.	Obtain the reduction formula for $\int \sin^n x dx$ and evaluate $\int_0^{\infty} \sin^n x dx$.	(06 Marks)
	b.	Solve $(y\cos x + \sin y + y)dx + (\sin x + x\cos y + x)dy$.	(05 Marks)
	c.	Find the orthogonal trajectories of the family of asteroids $x^{2/3} + y^{2/3} = a^{2/3}$.	(05 Marks)
		OR	
8	a.	Evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} dx \rightarrow 06.$	(06 Marks)
	b.	Solve $\frac{dy}{dx} + \frac{y}{x} = y^2 x$	(05 Marks)
	c.	A body in air at 25°C cools from 100°C to 75°C in one minute. Find the temper	ature of the
		body at the end of 3 minutes.	(05 Marks)
		Madula 5	
9 a. Solve the following system of equations by Gauss elimination method:			
-		x + y + z = 6	
		$\mathbf{x} - \mathbf{y} + \mathbf{z} = 2$	
	h	2x - y + 3z = 9 Use power method to find the largest eigen value and the corresponding eigen v	(06 Marks) ector of the
	0.	matrix A, taking $[1, 0, 0]$ T as initial eigen vector. Perform three iterations.	
		$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 \end{bmatrix}$	(05 Marks)
	c.	Show that the transformation	
		$y_1 = 2x_1 + x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$, $y_3 = x_1 - 2x_3$ is regular. Find	
	Ċ	transformation.	(05 Marks)
		OR OR	
10	a.	Solve the following system of equations by Gauss Seidal method	
		10x + y + z = 12	
		x + 10y + z = 12 $x + y + 10z = 12$ with $x_0 = y_0 = z_0 = 0$	(06 Marks)
	b.	Reduce the following matrix to the diagonal form	(00 1/10/165)
			(05 Mardar)
			(05 Marks)
	c.	Reduce the quadratic form $2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_3$ to the canonical form by	orthogonal
		transformation.	(05 Marks)

		2 of 2	
	Ċ		